

LA-UR-18-29663

Approved for public release; distribution is unlimited.

Title: DREAM utilizing real-time Van Allen probe data

Author(s): Walker, Andrew Charles

Morley, Steven Karl

Intended for: CSES Seminar

Issued: 2018-10-11

DREAM utilizing real-time Van Allen Probe Data

Andrew Walker and Steve Morley

October 9th, 2018

Outline

- Background
 - Radiation Belts
 - Spacecraft Anomalies
- Motivation
- Data Sources
 - GOES
 - Van Allen Probes
 - Beacon data
 - Science data
- Real-time Pipeline
- Results/Comparisons
- Conclusions

Background: Radiation Belts

• Los Alamos
NATIONAL LABORATORY
EST. 1943

- Many satellites orbit in the Earth's radiation belts which are zones of energetic charged particles trapped by the Earth's magnetic field
- The radiation belts can undergo large fluctuations from their "quiet-time" state due to geomagnetic storms created by solar activity including:
 - Solar Flares
 - Coronal Mass Ejections

Background: Spacecraft Anomalies

- Energetic charged particles in the radiation belts can induce spacecraft anomalies such as:
 - Single event effects
 - Surface/bulk charging/discharging
 - Total dose effects
- Anomalies can:
 - Corrupt spacecraft data
 - Cause short-term system outages
 - Cause system/subsystem failures
 - Completely incapacitate a spacecraft (e.g. loss of mission)

Arc damage to ESA EURECA solar array (credit: ESA)

Background: Space Env. Sensors

- Some spacecraft are equipped with sensors to:
 - Monitor charged particles in the radiation belts
 - Help determine the cause and conditions under which spacecraft anomalies occur
- Most spacecraft are not equipped with space weather instruments
 - They must rely on other satellites in other orbital regimes for information on the radiation belt environment

Measurements from the Magnetospheric Plasma Analyzer (MPA) aboard the geosynchronous LANL-02A satellite on Feb 28th, 2003. Spacecraft surface charging is seen in both the electrons (top) and ions (bottom). [credit: Thomsen et al., 2007]

Project Motivation

Generate global estimate of radiation belts with DREAM

- Global estimate gives more accurate information for satellites without space environment instruments
 - Better diagnose spacecraft anomalies
 - Better predict conditions that may cause anomalies
- DREAM is also a framework for better understanding the physical processes that control the radiation belts

Project Goal

- Currently, DREAM runs on geosynchronous data from GOES
 - Limited range of L-shell
 - Yields poor prediction for L far from ~6.6 (GEO L-shell)
- Goal: Add the Van Allen Probe real-time data (known as beacon or space weather data) for ingestion into DREAM
 - Covers a large range of L-shell from <2 to ~6
 - Should yield better global prediction of the radiation belts

GOES and Van Allen Probes orbital trajectories on March 7th, 2018. Colors denote L-shell bands. [credit: NOAA]

DREAM Framework

- Inputs: Radiation Belt
 Observations
 - GOES 13
 - Van Allen Probes
 - Beacon
 - Science
- Models
 - 1D Radial Diffusion
 Radiation Belt Model
 - Tsyganenko 1989
 (T89c) Magnetic Field
 Model
- Output
 - Global phase space density estimate
 - Flux along arbitrary satellite orbit

Data Sources: GOES 13

- GOES = Geostationary Operational Environmental Satellite
- Orbital longitude = 60° W
- Electron data from 2 sensor types
- Limited pitch angle coverage
- EPEAD
 - Energetic Proton, Electron, and Alpha Detectors
 - High energy integral fluxes
 - (>0.6 MeV, >2 MeV, >4 MeV)
- MAGED
 - Magnetospheric Electron Detector
 - Low energy differential fluxes
 - 30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, 350-600 keV

GOES 13 phase space density for specific μ and K.

Data Sources: Van Allen Probes

- Also known as the Radiation Belt Storm Probes (RBSP)
- Two satellites (A and B)
- Highly elliptical orbits (HEO)
- Electron data from 3 instruments
- MagEIS
 - Magnetic Ion Electron Spectrometers
 - Four types: Low, M35, M75, and High
 - Energy range = ~20 keV to ~5 MeV
- HOPE (Not used in this work)
 - Helium, Oxygen, Proton, and Electron
 Mass Spectrometer
 - Low energy sensor 1 eV to ~50 keV
- REPT (Not used in this work)
 - Relativistic Electron-Proton Telescope
 - High energy sensor ~1.5 MeV to ~20 MeV

Data Sources: RBSP A Beacon

- Real-time Van Allen Probe data
- Also known as "Space Weather" data
- Available for MagEIS, REPT, and HOPE
- MagEIS
 - Only Spin-averaged Electron Flux
 - Must be processed with REPAD to generate pitch angle tagged fluxes
 - Limited temporal coverage
 - ~85% coverage for RBSPA
 - ~35% coverage for RBSPB
- HOPE & REPT
 - Format and lack of compute information make real-time data make it difficult to use

RBSP A phase space density for specific μ and K.

Data Sources: RBSP B Beacon

- Real-time Van Allen Probe data
- Also known as "Space Weather" data
- Available for MagEIS, REPT, and HOPE
- MagEIS
 - Only Spin-averaged Electron Flux
 - Must be processed with REPAD to generate pitch angle tagged fluxes
 - Limited temporal coverage
 - ~85% coverage for RBSPA
 - ~35% coverage for RBSPB
- HOPE & REPT
 - Format and lack of compute information make real-time data make it difficult to use

RBSP A unidirectional differential electron flux for pitch angle of 45 degrees.

RBSP A phase space density for specific $\boldsymbol{\mu}$ and K.

Data Sources: RBSP A Science

- Definitive Van Allen Probe data
- Considered the "gold standard" of space environment data
- Available for MagEIS, REPT, and HOPE
- Not a real-time data source
 - Preliminary Level 3 flux files are available in ~12 hours
 - Definitive Level 3 flux files are available in ~1 week

RBSP A phase space density for specific μ and K.

Data Sources: RBSP B Science

- Definitive Van Allen Probe data
- Considered the "gold standard" of space environment data
- Available for MagEIS, REPT, and HOPE
- Not a real-time data source
 - Preliminary Level 3 flux files are available in ~12 hours
 - Definitive Level 3 flux files are available in ~1 week

Beacon Data Processing

- Van Allen Probe beacon data must be converted from spin-averaged flux to pitch angle tagged flux
 - Conversion utilizes REPAD
 - REPAD = Relativistic Electron Pitch
 Angle Distribution Model
- REPAD Model
 - Uses Legendre polynomials to fit pitch angle distributions
 - Trained using data from CRRES, Polar, and LANL-97A
 - Legendre polynomial coefficients depend on:
 - L-shell
 - AE index
 - Magnetic local time
 - Electron energy

Beacon vs. Science: Energy

- Van Allen Probe beacon data processed with REPAD compares quite well with the science data (example shown for June 1st, 2016)
 - 3 energies: 32 keV, 143 keV and 1.078 MeV
 - Pitch angle = 45 degrees

Beacon vs. Science: Pitch Angle

- Van Allen Probe beacon data processed with REPAD compares well with the science data at lower energies (example shown for June 1st, 2016)
 - 3 energies: 32 keV, 143 keV and 1.078 MeV
 - Time: June 1st, 2016 at 06:00:00 UNCLASSIFIED

- GOES 13 and Van Allen Probe beacon data is now ingested into DREAM in real-time
 - Global phase space density is updated every 30 minutes

Real-time DREAM

- Cut-in / cut-out times of Van Allen Probe data lead to discontinuities in the assimilated phase space density
 - Diffusion timescale is much shorter than the longest cut-out time period (~24 hour) in the Van Allen probe beacon data

Comparisons: Test Case

- Assimilated PSD is compared between:
 - GOES Only
 - GOES + Beacon
 - GOES + Science
- Time Period
 - Start: 2016-06-01
 - End: 2016-06-10
- ModerateGeomagnetic Storm
 - K_p : 1 to 6
 - DST: ~-40 to +30 nT

Comparisons: GOES Only

- With only GOES, there
 is no radial structure
 other than provided by
 the model
- Storm onset near June
 5th is clearly visible in
 DREAM PSD
- Reduction in PSD quickly diffuses away from GEO L-shell

Comparisons: GOES + Beacon

- Van Allen Probe Beacon adds additional radial structure at the cost of discontinuities in PSD
- Structure of low L-shell (3 to 4) is significantly enhanced
- Structure of L-shell from 4 to 6 is also enhanced but diffusion occurs at a faster rate in this region so discontinuities are more noticeable

Real-time DREAM assimilated phase space density based on GOES 13 and Van Allen Probe <u>beacon</u> local measurements.

Comparisons: GOES + Science

- **Van Allen Probe Science** data provides the best assimilated PSD but is not an option for realtime processing
- Some discontinuities are still visible, but they are significantly diminished compare to the Beacon data

Van Allen Probe <u>science</u> local measurements.

Conclusions

- Van Allen Probe beacon data processed and ingested by DREAM
 - Spin-averaged flux converted to pitch angle distribution by REPAD
 - ~85% coverage for RBSP A; ~35% coverage for RBSPB
 - Only utilizing data from MagEIS (~20 keV to ~5 MeV)
- DREAM PSD compared
 - GOES only: Little radial structure but does capture PSD drop during storm
 - GOES + Beacon: Adds radial structure but leads to discontinuities in PSD
 - GOES + Science: Most representative PSD but not available for real-time
- DREAM is running in real-time on GOES 13 and Van Allen Probe beacon data. PSD products are available at:
 - /n/space_data/dream/DREAM_PSD

